Abstract
Electrochemistry of outer-sphere redox molecules involves an essentially intact primary coordination sphere with minimal secondary sphere adjustments, resulting in very fast electron transfer events even without a noble metal-based electrocatalyst. Departing from conventional electrocatalytic paradigms, we incorporate these minimal reaction coordinate adjustments of outer-sphere species to stimulate the electrocatalysis of energetically challenging inner-sphere substrates. Through this approach, we are able to show an intricate 8e- and 9H+ transfer inner-sphere reductive electrocatalysis at almost half the energy input of a conventional inner-sphere electron donor. This methodology of employing outer-sphere redox species has the potential to notably improve the cost and energy benefits in electrochemical transformations involving fundamental substrates such as water, CO2, N2, and many more.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have