Abstract

AbstractThe development of Pd‐ and Ni‐catalyzed reactions for C−C bond formation is one of the primary driving forces in modern organic synthesis and the fine chemical industry. However, understanding the role of conformational mobility in reaction mechanisms is a long‐standing challenge. We highlight the effect of a multirotamer (multiconformer) system on the effective Gibbs free energy of activation in the key C−C coupling process and promote the use of a simplified version of multiconformer transition state theory that is straightforward to apply. Multivariate regression helped to quantitatively map the effect of coupled organic substituents (their structural and electronic parameters), as well as to determine the relative activity of metals. We provide computational evidence for solvent control of the equilibrium in RE/C−C‐bond activation for some model complexes. We also demonstrate that Ni complexes, being unique in the catalysis of sp3‐sp3 couplings, can be more challenging for machine learning and computational chemistry. The modeling was performed at an exceptionally high level, DLPNO‐CCSD(T)/CBS//RIJCOSX‐PBE0‐D4/def2‐TZVP. The Conclusions section contains an infographic summarizing the key findings related to the fields of cross‐coupling catalysis, machine learning in catalysis, and computational chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.