Abstract

ConspectusHomogeneous catalysis and biocatalysis have been widely applied in synthetic, medicinal, and energy chemistry as well as synthetic biology. Driven by developments of new computational chemistry methods and better computer hardware, computational chemistry has become an essentially indispensable mechanistic "instrument" to help understand structures and decipher reaction mechanisms in catalysis. In addition, synergy between computational and experimental chemistry deepens our mechanistic understanding, which further promotes the rational design of new catalysts. In this Account, we summarize new or deeper mechanistic insights (including isotope, dispersion, and dynamical effects) into several complex homogeneous reactions from our systematic computational studies along with subsequent experimental studies by different groups. Apart from uncovering new mechanisms in some reactions, a few computational predictions (such as excited-state heavy-atom tunneling, steric-controlled enantioswitching, and a new geminal addition mechanism) based on our mechanistic insights were further verified by ensuing experiments.The Zimmerman group developed a photoinduced triplet di-π-methane rearrangement to form cyclopropane derivatives. Recently, our computational study predicted the first excited-state heavy-atom (carbon) quantum tunneling in one triplet di-π-methane rearrangement, in which the reaction rates and 12C/13C kinetic isotope effects (KIEs) can be enhanced by quantum tunneling at low temperatures. This unprecedented excited-state heavy-atom tunneling in a photoinduced reaction has recently been verified by an experimental 12C/13C KIE study by the Singleton group. Such combined computational and experimental studies should open up opportunities to discover more rare excited-state heavy-atom tunneling in other photoinduced reactions. In addition, we found unexpectedly large secondary KIE values in the five-coordinate Fe(III)-catalyzed hetero-Diels-Alder pathway, even with substantial C-C bond formation, due to the non-negligible equilibrium isotope effect (EIE) derived from altered metal coordination. Therefore, these KIE values cannot reliably reflect transition-state structures for the five-coordinate metal pathway. Furthermore, our density functional theory (DFT) quasi-classical molecular dynamics (MD) simulations demonstrated that the coordination mode and/or spin state of the iron metal as well as an electric field can affect the dynamics of this reaction (e.g., the dynamically stepwise process, the entrance/exit reaction channels).Moreover, we unveiled a new reaction mechanism to account for the uncommon Ru(II)-catalyzed geminal-addition semihydrogenation and hydroboration of silyl alkynes. Our proposed key gem-Ru(II)-carbene intermediates derived from double migrations on the same alkyne carbon were verified by crossover experiments. Additionally, our DFT MD simulations suggested that the first hydrogen migration transition-state structures may directly and quickly form the key gem-Ru-carbene structures, thereby "bypassing" the second migration step. Furthermore, our extensive study revealed the origin of the enantioselectivity of the Cu(I)-catalyzed 1,3-dipolar cycloaddition of azomethine ylides with β-substituted alkenyl bicyclic heteroarenes enabled by dual coordination of both substrates. Such mechanistic insights promoted our computational predictions of the enantioselectivity reversal for the corresponding monocyclic heteroarene substrates and the regiospecific addition to the less reactive internal C═C bond of one diene substrate. These predictions were proven by our experimental collaborators. Finally, our mechanistic insights into a few other reactions are also presented. Overall, we hope that these interactive computational and experimental studies enrich our mechanistic understanding and aid in reaction development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call