Abstract

In this study, PFOA removal and defluorination were examined during vacuum ultraviolet (VUV) photolysis in the presence of sulfite and sulfite/iodide conditions. PFOA (24 μM) degradation rate constant (kobs) and defluorination amount in VUV photolysis, and VUV/sulfite, and VUV/sulfite/iodide reactions under nitrogen-purging condition were 5.50 × 10−3, 7.26 × 10−2, 1.60 × 10−1 min−1, and 34.6, 72.7, 73.9% in 6 h, respectively. When tert-butanol (t-BuOH), NO2−, and NO3− ions were added as radical scavengers, hydrated electrons (eaq−) was confirmed as the main species responsible for degrading PFOA and mediating defluorination in VUV-based reactions. While, during VUV photolysis, short-chain perfluoroalkyl carboxylic acids (PFCAs), such as PFHpA, PFHxA, PFPeA, and PFBA, were mainly produced as transformation products (TPs) by the chain-shortening mechanism, additional 14 and 15 TPs were identified in the VUV/sulfite and VUV/sulfite/iodide reactions by LC-QTOF/MS, respectively. The main degradation mechanisms in these reactions are H–F exchange (e.g., TP395 (m/z = 394.9739) and TP377 (m/z = 376.9838)), •SO3−–F exchange (TP474, m/z = 474.9323), carbon double bond formation by defluorination (e.g., TP392 (m/z = 392.9455), TP410 (m/z = 410.9355), and TP436 (m/z = 436.9347)), and H–F exchange followed by hydration reaction (TP393, m/z = 392.9773), respectively. PFOA degradation pathways were proposed for these VUV-based reactions based on the identified TPs, their time profiles, and the density functional theory (DFT). Finally, the toxicity of PFOA and its TPs produced during three reactions were assessed using ECOSAR simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.