Abstract
Lignin composed solely of caffeyl alcohol units, or C-lignin, was recently discovered in the seed coats of a number of vanilla orchid and cactus species. The caffeyl alcohol monomer polymerizes into a highly uniform benzodioxane backbone, making C-lignin a promising substrate for lignin valorization, where heterogeneity is a key challenge. In this study, we used reductive catalytic fractionation (RCF) on vanilla seeds to investigate the depolymerization of naturally grown C-lignin. To overcome challenges associated with the high extractive content and poor sugar retention in vanilla seeds, the ratio of monomer yield to total lignin yield was used to isolate the depolymerization efficiency of C-lignin from the extraction efficiency of lignin from seeds. This approach allowed us to compare extents of depolymerization across lignin types and biomass feedstocks. C-Lignin RCF generated extents of depolymerization akin to those of hardwoods, despite observing incomplete benzodioxane cleavage due to catalyst deactivation caused by the seed extractives. In addition, depolymerization of C-lignin produced a favorable monomeric product distribution consisting of only propyl and propenyl catechol. These promising results suggest that genetic modification of other plant species to incorporate C-lignin has the potential to yield a single, valuable catechol product via RCF.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have