Abstract

Intersection numbers are rational scalar products among functions that admit suitable integral representations, such as Feynman integrals. Using these scalar products, the decomposition of Feynman integrals into a basis of linearly independent master integrals is reduced to a projection. We present a new method for computing intersection numbers that only uses rational operations and does not require any integral transformation or change of basis. We achieve this by systematically employing the polynomial series expansion, namely the expansion of functions in powers of a polynomial. We also introduce a new prescription for choosing dual integrals, de facto removing the explicit dependence on additional analytic regulators in the computation of intersection numbers. We describe a proof-of-concept implementation of the algorithm over finite fields and its application to the decomposition of Feynman integrals at one and two loops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call