Abstract
Parallel transmitter techniques are a promising approach for reducing transmitter B1 inhomogeneity due to the potential for adjusting the spatial excitation profile with independent RF pulses. These techniques may be further improved with transmit sensitivity encoding (SENSE) methods because the sensitivity information in pulse design provides an excitation that is inherently compensated for transmitter B1 inhomogeneity. This paper presents a proof of this concept using transmit SENSE 3D tailored RF pulses designed for small flip angles. An eight-channel receiver coil was used to mimic parallel transmission for brain imaging at 3T. The transmit SENSE pulses were based on the fast-k(z) design and produced 5-mm-thick slices at a flip angle of 30 degrees with only a 4.3-ms pulse length. It was found that the transmit SENSE pulses produced more homogeneous images than those obtained from the complex sum of images from all receivers excited with a standard RF pulse.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have