Abstract

In modern high-numerical-aperture (NA) optical scanning instruments, such as scanning microscopes, optical data storage systems, or laser trapping technology, the beam emerging from the high-NA objective focuses deeply through an interface between two media of different refractive index. Such a refractive index mismatch introduces an important amount of spherical aberration, which increases dynamically when scanning at increasing depths. This effect strongly degrades the instrument performance. Although in the past few years many different techniques have been reported to reduce the spherical aberration effect, no optimum solution has been found. Here we concentrate on a technique whose main feature is its simplicity. We refer to the use of purely absorbing beam-shaping elements, which with a minimum modification of optical architecture will allow a significant reduction of the spherical aberration effect. Specifically, we will show that an adequately designed reversed-Gaussian aperture permits the production of a focal spot whose form changes very slowly with the spherical aberration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call