Abstract

Downwind sound propagation over a noise screen is investigated by numerical computations and scale model experiments in a wind tunnel. For the computations, the parabolic equation method is used, with a range-dependent sound-speed profile based on wind-speed profiles measured in the wind tunnel and wind-speed profiles computed with computational fluid dynamics (CFD). It is found that large screen-induced wind-speed gradients in the region behind the screen are responsible for a considerable reduction of the performance of the screen, for receivers near the boundary of the shadow region behind the screen. The screen-induced wind-speed gradients cause a considerable reduction of the size of the shadow region. If the screen-induced wind-speed gradients are taken into account, computed sound-pressure levels near the shadow boundary are in reasonable agreement with levels measured in the wind tunnel. In contrast, computed levels are considerably lower, up to 10 dB, if the screen-induced wind-speed gradients are ignored. This implies that the performance of a screen can be considerably improved if the screen-induced wind-speed gradients can be suppressed, e.g., by the use of “vented” screens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call