Abstract
To establish the function of the periplasmic Fe-only hydrogenase in the anaerobic sulfate reducer Desulfovibrio vulgaris (Hildenborough), derivatives with a reduced content of this enzyme were constructed by introduction of a plasmid that directs the synthesis of antisense RNA complementary to hydrogenase mRNA. It was demonstrated that the antisense RNA technique allowed specific suppression of the synthesis of this hydrogenase in D. vulgaris by decreasing the amount of hydrogenase mRNA but did not result in the complete elimination of the enzyme, as is usual with most conventional mutagenesis techniques. The hydrogenase content in these antisense RNA-producing D. vulgaris clones was two- to threefold lower than in the parental strain when the strains were grown in batch cultures with lactate as a substrate and sulfate as a terminal electron acceptor. Under these conditions, several differences in growth parameters were measured between the hydrogenase-suppressed clones and wild-type D. vulgaris: growth rates of the clones decreased two- to threefold, and at excess lactate, growth yields were reduced by 20%. Furthermore, the amount of hydrogen measured in the culture headspaces was reduced three- to fivefold for the clones. These observations indicate that this hydrogenase has an important function during growth on lactate and is involved in hydrogen production from protons and electrons originating from at least one of the two oxidation reactions in the conversion of lactate to acetate. The implications for the energy metabolism of D. vulgaris are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.