Abstract

Detailed conduction mechanisms in a conventional Schottky barrier thin-film transistor (SBTFT) and a recently proposed novel SBTFT with field-induced drain (FID) extension have been studied. The new SBTFT device with FID extension shows excellent ambipolar performance with effective suppression of gate-induced drain leakage (GIDL)-like off-state leakage that plagues conventional SBTFT devices. By characterizing the activation energy of the conduction process in the off-state for conventional SBTFT devices, it is suggested that field emission of carriers from the drain junction is the major conduction mechanism. While for the FID SBTFT devices, owing to the effect of Fermi level pinning in the FID region, thermionic emission rather than field emission becomes the dominant conduction mechanism, resulting in the effective suppression of the undesirable GIDL-like leakage current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.