Abstract

In 1960 Ore proved the following theorem: Let G be a graph of order n. If d(u)+d(v)⩾n for every pair of nonadjacent vertices u and v, then G is hamiltonian. In this note we strengthen Ore's theorem as follows: we determine the maximum number of pairs of nonadjacent vertices that can have degree sum less than n (i.e. violate Ore's condition) but still imply that the graph is hamiltonian. Some other sufficient conditions (i.e. Fan's condition) for hamiltonian graphs are strengthened as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.