Abstract

We report here the reduction of leakage current through a thin ferroelectric layer by insertion of an HfO 2 film. We fabricated metal-insulator-ferroelectric-insulator-semiconductor (MIFIS) and metal-ferroelectric-insulator-metal (MFIS) structures. A Pb x La 1 m x TiO 3 (PLT) ferroelectric layer was deposited on a thermally oxidized p-type Si substrate with a Zr buffer layer. Adopting an HfO 2 layer on the ferroelectric layer of a MIFIS structure with an equivalent oxide thickness (EOT) of 5 nm resulted in a reduction by only 13 percent of the voltage distribution on the ferroelectric layer. Applying HfO 2 to the ferroelectric layer of a MFIS structure, however, led to a 70% decrease in leakage current: from 2.7 2 10 m 8 to 0.76 2 10 m 8 A/cm 2 at +1 V. An HfO 2 film, by itself, shows leakage that is 3 orders of magnitude smaller than that of PLT; clearly, insertion of the film impedes leakage through the ferroelectric layer. This characteristic is believed to contribute to extension of the retention time of MFMIS FETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.