Abstract
Jarosite is a common mineral in a variety of environments formed by the oxidation of iron sulfide normally accompanying with the generation of acid mine drainage (AMD) in mining areas or acid rock drainages (ARD) in many localities. Decomposition of jarosite by dissimilatory iron reducing bacteria (DIRB) influences the mobility of many heavy metals generally accommodated in natural jarosite. This study examined the anaerobic reduction of synthesized jarosite by Shewanella oneidensis strain MR-1, a typical facultative bacteria. The release of ferrous and ferric ion, as well as sulfate and potassium, in the inoculated experimental group lasting 80 days is much higher than that in abiotic control groups. The detection of bicarbonate and acetate in experimental solution further confirms the mechanism of microbial reduction of jarosite, in which lactate acts as the electron donor. The produced ferrous iron stimulates the subsequent secondary mineralization, leading to precipitation and transformation of various iron-containing minerals. Green rust and goethite are the intermediate minerals of the microbial reduction process under anoxic conditions, and the end products include magnetite and siderite. In aerobic environments, goethite, magnetite and siderite were also detected, but the contents were relatively lower. While in abiotic experiments, only goethite has been detected as a product. Thus, the microbial reduction and subsequent mineral transformation can remarkably influence the geochemical cycling of iron and sulfur in supergene environments, as well as the mobility of heavy metals commonly accommodated in jarosite.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have