Abstract
In recent years, more and more attentions are put on the remediation of Cr(VI) contamination with chromate resistant bacteria. Leucobacter sp. CRB1 was a novel chromate reducing bacteria isolated from the soil of chromite ore processing residue (COPR) disposal site in Changsha, China. The objectives of this study were to evaluate the Cr(VI) tolerance of Leucobacter sp. CRB1 as well as its tolerant mechanism, and Cr(VI) reduction ability. The results showed that Leucobacter sp. CRB1 was able to tolerate 4,000 mg/l of hexavalent chromium with 34.5% reduction efficiency. At the optimum pH 9.0, the maximum concentration of chromate be reduced completely was 1,818 mg/l in growing cells and 2,100 mg/l in resting cells. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) showed that extracellular Cr(VI) reduction of Leucobacter sp. CRB1 contributed to its high tolerance and high reduction ability. With repeating spiking, 2,490 mg/l hexavalent chromium was reduced totally within 17 h. The results suggest Leucobacter sp. CRB1 has potential application for remediation of high concentration of Cr(VI) contamination.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have