Abstract

Vegetable oils have been shown to reduce enteric methane (CH4) production by up to 20%. However, when the level of incorporation exceeds the threshold of 70 g/kg DM, dry matter intake (DMI) and nutrient digestibility may be reduced. The objective of this study was to determine the effects of the incorporation of three levels of palm oil (PO) on enteric CH4 emissions, rumen fermentation and apparent digestibility in heifers fed low-quality grass. Four rumen-cannulated heifers (Bos taurus × Bos indicus) were randomly assigned to four treatments: control (CON) and three increasing PO levels: 20, 40 and 60 g/kg in a 4 × 4 Latin square design with four periods of 22 days (14 days of adaptation to the ration), 5 days of feces and rumen fluid sampling (day 18, 4 h postprandial) and the last 3 days for measurements of CH4 in respiration chambers. With the exception of CP (p = 0.04), starch (p = 0.002) and EE (p < 0.001), the intake of nutrients was not affected by the inclusion of PO (p > 0.05). The apparent digestibility (AD) of nutrients was not affected by the inclusion of PO (p > 0.05), except for starch, which reduced its AD as the PO level was increased (p < 0.05). The gross energy intake was higher in PO-containing rations (p = 0.001), on the other hand, the digestible energy intake was similar between treatments (p > 0.05). In situ ruminal digestion kinetics and the potential degradability remained unchanged (p > 0.05), however, the effective degradability decreased with the inclusion of PO in the rations (p < 0.05). The ruminal pH and molar proportions of acetic, isovaleric and valeric acid were not different between treatments (p > 0.05). The ruminal concentration of propionic acid increased as the PO level increased, reaching its highest molar proportion with 60 g/kg PO (p < 0.05), however, the acetic/propionic ratio and the molar proportions of butyric acid and isobutyric acid decreased as the PO level increased (p < 0.05). The total daily CH4 production was lower in diets containing 20, 40 and 60 g/kg PO compared to the CON diet (p < 0.001). The production of CH4 per kg DMI and DOMI was greater (p < 0.05) for the CON diet compared to all three rations containing PO. The emission intensity, Ym, energy lost as CH4, emission factor (EF) and kg CO2 eq/year were reduced as an effect of the inclusion of PO (p < 0.05). Based on the results obtained, it is concluded that the incorporation of PO in cattle rations has the potential to reduce enteric methane emissions by 4% for every 10 g/kg PO in the ration, without affecting DMI, apparent digestibility or the consumption of digestible nutrient fractions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call