Abstract
Activated leukocytes appear to potentiate central nervous system reperfusion injury, and agents that block leukocyte adhesion have shown neuroprotective efficacy in experimental models. Doxycycline, a tetracycline antibiotic, inhibits leukocyte function in vitro, presumably through divalent cation binding. We used a model of focal central nervous system reperfusion injury to determine the efficacy of doxycycline treatment in preserving neurological function. Rabbits randomly received 10 mg/kg i.v. doxycycline 30 minutes before ischemia (pretreatment group) or 45 minutes after ischemia (posttreatment group) or received phosphate-buffered saline vehicle (control group) followed by 10 mg/kg q 8 hours times two. The average length of reversible spinal cord ischemia required to produce paraplegia (P50) at 18 hours was calculated for each group. For the control group (n = 13), the P50 was 22.8 +/- 2.2 minutes; for the pretreatment group (n = 14), 35.5 +/- 2.4 minutes (P < .01; t = 3.8); and for the posttreatment group (n = 13), 31.4 +/- 4.2 minutes (not significant; t = 1.6). Doxycycline also attenuated postischemic decreases in vivo leukocyte counts and inhibited in vitro leukocyte adhesion. Therapeutic doxycycline levels at 24 hours were confirmed in the plasma and spinal cord. This significant protective effect suggests that doxycycline, a safe and readily available agent, may play a role in reducing clinical central nervous system reperfusion injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.