Abstract

AbstractMagnetorotational instability (MRI) is one of the most important and most common instabilities in astrophysics. It is widely accepted that it serves as a source of turbulent viscosity in accretion disks – the most energy efficient objects in the Universe. However it is very difficult to bring this process down on earth and model it in a laboratory experiment. Several different approaches have been proposed, one of the most recent is PROMISE (Potsdam‐ROssendorf Magnetorotational InStability Experiment). It consists of a flow of a liquid metal between two rotating cylinders under applied current‐free spiral magnetic field. The cylinders must be covered with plates which introduce additional end‐effects which alter the flow and make it more difficult to clearly distinguish between MRI stable and unstable state. In this paper we propose simple and inexpensive improvement to the PROMISE experiment which would reduce those undesirable effects. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.