Abstract

We use well–established observational evidence to draw conclusions about the fundamental nature of the viscosity in accretion discs. To do this, we first summarise the observational evidence for the value of the dimensionless accretion disc viscosity parameter α, defined by Shakura and Sunyaev (1973, 1976). We find that, for fully ionized discs, the value of α is readily amenable to reliable estimation and that the observations are consistent with the hypothesis that α∼0.2−0.3. In contrast in discs that are not fully ionized, estimates of the value of α are generally less direct and the values obtained are generally < 0.01 and often ≪ 0.01. We conclude that this gives us crucial information about the nature of viscosity in accretion discs. First, in fully ionized discs the strength of the turbulence is always limited by being at most trans-sonic. This implies that it is necessary that credible models of the turbulence reflect this fact. Second, the smaller values of α found for less ionized, and therefore less strongly conducting, discs imply that magnetism plays a dominant role. This provides important observational support for the concept of magneto-rotational instability (MRI) driven hydromagnetic turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.