Abstract
Despite extensive research on reduction of iron oxides in literature, there is no consensus on the most accurate reduction kinetics, especially for micron-sized iron oxide powders with high purity. Such data is particularly important for the application of metal fuels and chemical looping combustion, in which high purity iron powders function as dense energy carriers. Hence, in this work, hydrogen reduction of iron oxide fines, produced by iron combustion, were investigated using thermogravimetric analysis (TGA). The isothermal reduction experiments were conducted at the temperature range of 400–900 °C and at hydrogen partial pressures of 0.25–1.0 atm. Scanning electron microscopy (SEM) showed that the morphology of the reduction products depends on the reduction temperature but not on the hydrogen partial pressure. Reduction at higher temperatures leads to larger pore sizes. Based on an extended Hancock-Sharp “lnln”-method the appropriate gas-solid reaction models are determined, suggesting that the reduction can be described by a single-step phase boundary controlled reaction at temperatures below 600 °C, whereas a multistep mechanism is required for the description of reactions at higher temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.