Abstract

Intelligent Transportation Systems (ITS) encompasses technologies, services, and applications facilitating communication between vehicles (V2V) and between vehicles and fixed infrastructure (V2I and I2V). This mutual interaction constitutes a Vehicular Ad-Hoc Network (VANET) which supports a plethora of applications targeting critical transportation aspects, such as safety, mobility, and environmental considerations. Dedicated Short Range Communications (DSRC), operating on the 5.9 GHz band, is pivotal for such exchanges. We introduced an innovative algorithm designed to identify jamming attacks and transition the Safety Application to a secure fail-safe mode. This algorithm leverages a dual-metric strategy, incorporating both distance and PDR measurements. Field tests confirm that our algorithm adeptly recognizes the activities of deceptive jammers, ensuring a prompt shift of the safety application into its fail-safe state. This paper delves into these countermeasures, evaluating their efficiency via mathematical modeling, simulations, and on-ground testing. Findings acknowledge that these strategies bolster the reliability of safety applications in jamming scenarios. Furthermore, the approaches propounded align with ongoing standardization endeavors by relevant authorities, ensuring communication mediums remain unhindered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call