Abstract
Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli, primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by Hmox1) in HUS has not yet been investigated. We hypothesized that HO-1, also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS. The effect of tamoxifen-induced Hmox1 gene deletion on renal HO-1 expression, disease progression and AKI was investigated in mice 7 days after HUS induction. Renal HO-1 levels were increased in Stx-challenged mice with tamoxifen-induced Hmox1 gene deletion (Hmox1R26Δ/Δ) and control mice (Hmox1lox/lox). This HO-1 induction was significantly lower (−43%) in Hmox1R26Δ/Δ mice compared to Hmox1lox/lox mice with HUS. Notably, the reduced renal HO-1 expression was associated with an exacerbation of kidney injury in mice with HUS as indicated by a 1.7-fold increase (p = 0.02) in plasma neutrophil gelatinase-associated lipocalin (NGAL) and a 1.3-fold increase (p = 0.06) in plasma urea, while other surrogate parameters for AKI (e.g., periodic acid Schiff staining, kidney injury molecule-1, fibrin deposition) and general disease progression (HUS score, weight loss) remained unchanged. These results indicate a potentially protective role of HO-1 in the pathogenesis of Stx-mediated AKI in HUS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.