Abstract

In this work, a series of long-term treatment trials were conducted to evaluate the remediation performance of amorphous iron pyrite (FeS2(am)) toward hexavalent chromium (Cr(VI)) in chromite ore processing residue (COPR). The effectiveness of FeS2(am) was assessed using alkaline digestion, the synthetic precipitation leaching procedure (SPLP) and the physiologically based extraction test (PBET). Reaction mechanisms were explored by monitoring the changes in the solid pH, redox potential (Eh), the chemical states of relevant elements as well as the crystal forms present in COPR. The results showed that, using a proper dosage, the total content of Cr and Cr(VI) in the leachate from treated COPR met the Chinese standard regulatory limits for the extraction toxicity of hazardous wastes (GB 5085.3–2007). In addition, the in vitro bioaccessibility of Cr(VI) in COPR was also significantly reduced. Moreover, the remediation effect was maintained for the subsequent six months. This long-term effect was attributed to the presence of reductive sulfur (S) species and Fe(II) that remained even after 180 days of treatment, which were identified using high-resolution X-ray photoelectron spectroscopy (HR-XPS) and X-ray diffraction (XRD). To maximize the effect of FeS2(am), 5% lime was employed as an additive to adjust the pH and thus contributed to Cr(VI) reduction and immobilization. To remediate COPR within 30 days, the use of 5% lime and a specific FeS2(am) dosage (FeS2(am):Cr(VI) = 1.25:1) is recommended based on the results. For rapid remediation (< 1 day), the use of 5% lime and a 2.5:1 FeS2(am):Cr(VI) ratio is recommended. In comparison with widely studied reductants, FeS2(am) showed excellent efficiency for the remediation of COPR over both short- and long-term treatment trials, demonstrating it is a very promising alternative treatment method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.