Abstract

An assessment and reduction of the phasor-error infiltration in estimates from phasorlets are proposed in this paper through a generalized least-square formulation of the problem. It introduces a computationally simple and quick estimator that exploits the structure of the sinusoidal model and provides the finest stable phasor estimate, which is very useful for fault voltage signals. It also proposes an extended signal model, by including a dc component into the signal model, in order to allocate the phasor error, when an aperiodic component is present in the input signal. The numerical simulations illustrate the improvement in speed and accuracy of the estimates, which are obtained in decicycles, as well as its still wavering nature, which is considered as the persisting limitation of this technique

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.