Abstract
Accurate estimation of amplitude, phase and frequency of a sinusoid in the presence of harmonics/inter harmonics and noise plays an important role in a wide variety of power system applications, like protection, control and state monitoring. With this objective, the paper presents a novel hybrid approach for the accurate estimation of dynamic power system frequency, phasor and in addition to suppressing the effect of harmonics/interharmonics and noise in the voltage and current signals. The algorithm assumes that the current during a fault occurring on a power system consists of a decaying dc component, and time variant fundamental and harmonic phasors. For accurate estimation of fundamental frequency, phasor, decaying dc and ac components in the fault current or voltage signal, the algorithm uses a quadratic polynomial signal model and a fuzzy adaptive ADALINE filter with a modified Gauss–Newton algorithm. Extensive study has been carried out to demonstrate the performance analysis and fast convergence characteristic of the proposed algorithm. The proposed method can also be implemented for accurate estimation of dynamic variations in the amplitude and phase angles of the harmonics and inter harmonics mixed with high noise conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.