Abstract

The trend in the automotive industry is to reduce the size of engines while increasing power. The concept of leveraging considers not only the efficiency of manufacturing a product but all consumption of energy or other natural resources during the life cycle of the product. In this process, one of the bottlenecks to more efficient engines is the exhaust valve. The valve and valve seat together perform the function of ensuring the entry of air and combustible material, the output of combustion gases and the sealing function during the compression and combustion processes. The valve is the most demanding component in high efficiency engines. To ensure the rigor of operation while providing clean burning and low emissions, the application of special materials is necessary. The extremely high temperatures of the exhaust gases, the velocities of valves and the high operating pressure are only some of the parameters that cause wear on valves. The materials used in valve production must be characterized by good workability, low wear, good mechanical strength and good fatigue and corrosion resistance at high temperatures. In this context, the CCM/ITA and SENAI CIMATEC jointly developed a workbench to simulate the durability of valves and valve seats, analyze their wear resistance and evaluate their behavior with varying parameters. This paper shows the workbench development process and a new testing method that considers the high engine operation temperatures and focuses on reducing the new material development life cycle and the emissions during the product usage life time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.