Abstract

The combustion of the internal combustion engine results in high heat and pressure produce as exhaust gas. The high-temperature exhaust gas will transfer the heat to surrounding via convection, conduction, and radiation. In the combustion chamber, the exhaust valve and its seat will reach high temperatures due to hot gases exit through the engine exhaust port. This high temperature must be reduced to avoid damaging the engine. In this project, the existing material of the valve seat is tested using computational fluid dynamics simulation for heat analysis. Simulation of transient thermal is conducted to study the detailed behavior of heat transfer of the valve and valve seat in the engine. Four copper-based material of the valve seat is selected which is beryllium copper, chromium copper, brass, bronze are simulated. In the simulation, the brass valve seat has the highest heat absorbance rate which averagely 30% higher than cast iron valve seat in terms of temperature differences. Most of the copper-based valve seat can absorb averagely 10% to 30% more heat than cast iron valve seat depends on the material’s thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.