Abstract

Abstract A well-known bias common to many bulk microphysics schemes currently being used in cloud-resolving models is the tendency to produce excessively large reflectivity values (e.g., 40 dBZ) in the middle and upper troposphere in simulated convective systems. The Rutledge and Hobbs–based bulk microphysics scheme in the Goddard Cumulus Ensemble model is modified to reduce this bias and improve realistic aspects. Modifications include lowering the efficiencies for snow/graupel riming and snow accreting cloud ice; converting less rimed snow to graupel; allowing snow/graupel sublimation; adding rime splintering, immersion freezing, and contact nucleation; replacing the Fletcher formulation for activated ice nuclei with that of Meyers et al.; allowing for ice supersaturation in the saturation adjustment; accounting for ambient RH in the growth of cloud ice to snow; and adding/accounting for cloud ice fall speeds. In addition, size-mapping schemes for snow/graupel were added as functions of temperature and mixing ratio, lowering particle sizes at colder temperatures but allowing larger particles near the melting level and at higher mixing ratios. The modifications were applied to a weakly organized continental case and an oceanic mesoscale convective system (MCS). Strong echoes in the middle and upper troposphere were reduced in both cases. Peak reflectivities agreed well with radar for the weaker land case but, despite improvement, remained too high for the MCS. Reflectivity distributions versus height were much improved versus radar for the less organized land case but not for the MCS despite fewer excessively strong echoes aloft due to a bias toward weaker echoes at storm top.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.