Abstract

This paper illustrates how the communication due to pivoting in the solution of symmetric indefinite linear systems can be reduced by considering innovative approaches that are different from pivoting strategies implemented in current linear algebra libraries. First a tiled algorithm where pivoting is performed within a tile is described and then an alternative to pivoting is proposed. The latter considers a symmetric randomization of the original matrix using the so-called recursive butterfly matrices. In numerical experiments, the accuracy of tile-wise pivoting and of the randomization approach is compared with the accuracy of the Bunch-Kaufman algorithm.Keywordsdense linear algebrasymmetric indefinite systemsLDL\(^\text{T}\) factorizationpivotingtiled algorithmsrandomization

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.