Abstract

In this paper, we generalize the saddle point problem to general symmetric indefinite systems, we also present a kind of convergent splitting iterative methods for the symmetric indefinite systems. A special divergent splitting is introduced. The sufficient condition is discussed that the eigenvalues of the iteration matrix are real. The spectral radius of the iteration matrix is discussed in detail, the convergence theories of the splitting iterative methods for the symmetric indefinite systems are obtained. Finally, we present a preconditioner and discuss the eigenvalues of preconditioned matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.