Abstract
To investigate the feasibility of reducing the scan time of paediatric technetium 99m (99mTc) dimercaptosuccinic acid (DMSA) single-photon-emission computed tomographic (SPECT) using a deep learning (DL) method. A total of 112 paediatric 99mTc-DMSA renal SPECT scans were analysed retrospectively. Of the 112 examinations, 88 (84 for training and four for validation) were used to train a DL-based model that could generate full-acquisition-time reconstructed SPECT images from half-time acquisition. The remaining 24 examinations were used to evaluate the performance of the trained model. DL-based SPECT images obtained from half-time acquisition have image quality similar to the standard clinical SPECT images obtained from full-acquisition-time acquisition. Moreover, the accuracy, sensitivity and specificity of the DL-based SPECT images for detection of affected kidneys were 91.7%, 83.3%, and 100%, respectively. These preliminary results suggest that DL has the potential to reduce the scan time of paediatric 99mTc-DMSA SPECT imaging while maintaining diagnostic accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.