Abstract

Obstacle avoidance plays a crucial role in ensuring the safe path planning of quadrotor unmanned aerial vehicles (QUAVs). In this study, we propose a hierarchical framework for obstacle avoidance, which combines the use of artificial potential field (APF) and deep reinforcement learning (DRL) for training low-level motion controllers. Unlike traditional potential field methods, our approach modifies the state information received by the motion controllers using the outputs of the APF path planner. Specifically, the assumed target position is pushed away from obstacles, resulting in adjustments to the perceived position errors. Additionally, we address path oscillations by incorporating the target’s velocity information, which is calculated based on the time-derivative of the repulsive force. Experimental results have validated the effectiveness of our proposed framework in avoiding collisions with obstacles and reducing oscillations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call