Abstract
We give analytical bounds on the Value-at-Risk and on convex risk measures for a portfolio of random variables with fixed marginal distributions under an additional positive dependence structure. We show that assuming positive dependence information in our model leads to reduced dependence uncertainty spreads compared to the case where only marginals information is known. In more detail, we show that in our model the assumption of a positive dependence structure improves the best-possible lower estimate of a risk measure, while leaving unchanged its worst-possible upper risk bounds. In a similar way, we derive for convex risk measures that the assumption of a negative dependence structure leads to improved upper bounds for the risk while it does not help to increase the lower risk bounds in an essential way. As a result we find that additional assumptions on the dependence structure may result in essentially improved risk bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.