Abstract

Spinal cord injury (SCI) is an unexpected event that is both devastating and debilitating, resulting in not just motor and sensory loss, but also autonomic dysfunction of the bladder, bowel and sexual organs. Currently, there are no treatments available to improve outcome following SCI, leaving individuals with permanent and lifelong physical disability. Worldwide it is estimated that more than 500,000 people sustain a SCI each year, with average lifetime cost of paraplegia and quadriplegia estimated at $5 million and $9.5 million respectively. We therefore urgently need effective therapies to improve quality of life following SCI, and this requires a greater understanding of how cell and axonal injury develops after the traumatic event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.