Abstract

The need to minimize power while maximizing performance has led to recent developments of powerful superscalar designs targeted at embedded and portable use. Instruction fetch is responsible for a significant fraction of microprocessor power and energy, and is therefore an attractive target for architectural power optimization. We present novel techniques that take advantage of guarantees so that the instruction translation lookaside buffer, branch target buffer, and branch prediction buffer can frequently be disabled, reducing their energy usage, while simultaneously reducing branch predictor contention. These techniques require no changes to the instruction set and can easily be integrated into most single- and multiple-issue processors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.