Abstract

The self-consistent and complex spin-orbit exact two-component (X2C) formalism for NMR spin-spin coupling constants [ J. Chem. Theory Comput. 17, 2021, 3874-3994] is reduced to a scalar one-component ansatz. This way, the first-order response term can be partitioned into the Fermi-contact (FC) and spin-dipole (SD) interactions as well as the paramagnetic spin-orbit (PSO) contribution. The FC+SD terms are real and symmetric, while the PSO term is purely imaginary and antisymmetric. The relativistic one-component approach is combined with a modern density functional treatment up to local hybrid functionals including the response of the current density. Computational demands are reduced by factors of 8-24 as shown for a large tin compound consisting of 137 atoms. Limitations of the current ansatz are critically assessed for Sn, Pb, Pd, and Pt compounds, i.e. the one-component treatment is not sufficient for tin compounds featuring a few heavy halogen atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.