Abstract
One of the major inertial fusion energy reactor designs is HYLIFE-II which uses protective flowing liquid wall between fusion plasma and solid first wall. The most attractive aspect of this reactor is that protective liquid wall eliminates the frequent replacement of the first wall structure during reactor lifetime. Liquid wall thickness must be at least the thickness required for supplying sufficient tritium for the deuterium–tritium (DT) driver and satisfying radiation damage on the first wall below the limits. Reducing this thickness results less pumping power requirements and cost of electricity. In this study, investigation on potential of utilizing refractory alloys (W-5Re, TZM and Nb-1Zr) as first wall to reduce effective liquid wall thickness in HYLIFE-II reactor using liquid wall of Flibe + 10 mol % UF4 mixture. Neutron transport calculations were carried out with the help of the SCALE4.3 system by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and a S8-P3 approximation. Numerical results showed that using W-5Re or TZM as first wall was effective in decreasing liquid wall thickness in contrast to Nb-1Zr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.