Abstract

Using liquid wall between the plasma and solid first wall in a fusion reactor allows to use high neutron wall loads and could eliminate frequent replacement of the first wall structure during reactor’s lifetime. Liquid wall should have a certain effective or optimum thickness to extend solid first wall lifetime to reactor’s lifetime and supply sufficient tritium for deuterium–tritium (DT) fusion driver. This study presents the effect of thickness of flowing liquid wall containing 90 mol % Flibe+10 mol % UF4 or ThF4 on the neutronic performance of a magnetic fusion reactor design called APEX. Neutron transport calculations were carried out with the aid of code Scale4.3. Numerical results brought out that optimum liquid wall thickness of ∼38 cm was found for the blankets using Flibe+10% UF4 whereas, 56 cm for that with Flibe+10% ThF4. Significant amount of high quality fissile fuel was produced by using heavy metal salt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.