Abstract
When using an electron microscope for imaging of particles embedded in vitreous ice, the recorded image, or micrograph, is a significantly degraded version of the tomographic projection of the sample. Apart from noise, the image is affected by the optical configuration of the microscope. This transformation is typically modeled as a convolution with a point spread function. The Fourier transform of this function, known as the contrast transfer function (CTF), is oscillatory, attenuating and amplifying different frequency bands, and sometimes flipping their signs. High-resolution reconstruction requires this CTF to be accounted for, but as its form depends on experimental parameters, it must first be estimated from the micrograph. We present a new method for CTF estimation based on multitaper techniques that reduce bias and variance in the estimate. We also use known properties of the CTF and the background power spectrum to further reduce the variance through background subtraction and steerable basis projection. We show that the resulting power spectrum estimates better capture the zero-crossings of the CTF and yield accurate CTF estimates on several experimental micrographs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.