Abstract

The density of vehicles causes congestion seen at every junction in the city of jakarta due to the static or manual traffic timing lamp system consequently the length of the queue at the junction is uncertain. The research has been aimed at designing a sensor based traffic system based on the queue length detection of the vehicle to optimize the duration of the green light. In detecting the length of the queue of vehicles using infrared sensor assistance placed in each intersection path, then apply Greedy algorithm to help accelerate the movement of green light duration for the path that requires, while to apply the traffic lights regulation program based on greedy algorithm which is then stored on microcontroller with Arduino Mega 2560 type. Where a developed system implements the greedy algorithm with the help of the infrared sensor it will extend the duration of the green light on the long vehicle queue and accelerate the duration of the green light at the intersection that has the queue not too dense. Furthermore, the design is made to form an artificial form of the actual situation of the scale model or simple simulator (next we just called as scale model of simulator) of the intersection then tested. Sensors used are infrared sensors, where the placement of sensors in each intersection on the scale model is placed within 10 cm of each sensor and serves as a queue detector. From the results of the test process on the scale model with a longer queue obtained longer green light time so it will fix the problem of long queue of vehicles. Using greedy algorithms can add long green lights for 2 seconds on tracks that have long queues at least three sensor levels and accelerate time at other intersections that have longer queue sensor levels less than level three.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.