Abstract

This article is devoted to the study of a two-dimensional $(2D)$ quasi-periodically forced beam equation $ u_{tt}+\Delta^2 u+ \varepsilon\phi(t)(u+{u}^3) = 0, \quad x\in\mathbb{T}^2, \quad t\in\mathbb{R} $ under periodic boundary conditions, where $\varepsilon$ is a small positive parameter, $\phi(t)$ is a real analytic quasi-periodic function in $t$ with frequency vector $\omega = (\omega_1, \omega_2 \ldots, \omega_m)$. We prove that the equation possesses a Whitney smooth family of small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is based on an infinite dimensional KAM theorem and Birkhoff normal form. By solving the measure estimation of infinitely many small divisors, we construct a symplectic coordinate transformation which can reduce the linear part of Hamiltonian system to constant coefficients. And we construct some conversion of coordinates which can change the Hamiltonian of the equation into some Birkhoff normal form depending sparse angle-dependent terms, which can be achieved by choosing the appropriate tangential sites. Lastly, we prove that there are many quasi-periodic solutions for the above equation via an abstract KAM theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.