Abstract

Local ventilation systems are widely used in industrial production processes to capture heat release and/or gaseous/particulate contaminants. The primary objective of this study was to determine important empirical factors on local pollutant capture efficiency and characteristics of thermal stratification in the working areas of industrial plants. Investigated factors were confined airflow boundaries, flow rates of the exhaust hoods, source strengths, airflow obstacles and distances between sources and exhaust hoods. Reduced-scale experiments were conducted with a geometric scale of 1:15 corresponding to a portion of the blast furnace workshop of a steel plant. The dependency of capture efficiency on Archimedes numbers was established. The results showed that confined airflow boundaries, flow rates of the exhaust hoods and source strengths were important empirical factors on pollutant capture efficiency. Hood performance was also evaluated by thermal stratification heights in the plants. This study could help improve the capture efficiency of local ventilation systems used in industrial plants. Safe operation heights are recommended in the upper space of industrial plants based on the thermal stratification in the plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.