Abstract
BackgroundThe development of tigecycline resistance in hypervirulent Klebsiella pneumoniae strains has resulted in decreased virulence that is associated with reduced production of capsular polysaccharides (CPS). In this study, we investigated the mechanisms that link tigecycline susceptibility to decreased virulence.MethodsWe compared transcriptomes from tigecycline-susceptible wild-type strains and tigecycline-resistant mutants using mRNA sequencing. ompR-overexpressed and ompR-deleted mutants were constructed from wild-type strains and tigecycline-resistant mutants, respectively. Antibiotic susceptibility tests were performed, and string tests and precipitation assays were conducted to identify phenotypic changes related to tigecycline susceptibility and ompR expression. Bacterial virulence was assessed by serum resistance and Galleria mellonella infection assays.ResultsTranscriptomic analyses demonstrated a significant decrease in the expression of ompK35 in the tigecycline-resistant mutants. We observed that tigecycline-resistant mutants overexpressed ompR, and that the expression of ompK35 was regulated negatively by ompR. While tigecycline-resistant mutants and ompR-overexpressed mutants exhibited reduced hypermucoviscosity and virulence, deletion of ompR from tigecycline-resistant mutants restored their hypermucoviscosity and virulence.ConclusionsIn hypervirulent K. pneumoniae strains, ompR expression, which is regulated by exposure to tigecycline, may affect the production of CPS, leading to bacterial virulence.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have