Abstract

Basal forebrain cholinergic neurons atrophy and degenerate in aging and Alzheimer's disease for unknown reasons. In this study, aged male Sprague-Dawley rats (26–30 months old) showed a significant 31% reduction in the number of septal cholinergic neurons which take up and retrogradely transport 125I-labelled nerve growth factor injected into their target hippocampus, as compared with young adult rats (three to six months old). In aged rats, cholinergic neurons not transporting nerve growth factor were severely atrophied and had a significant 60% reduction in mean cross-sectional area as compared with [ 125I]nerve growth factor transporting neurons. These changes were accompanied by a significant 43% decline in relative levels of messenger RNA encoding the high affinity nerve growth factor receptor TrkA, in the septal region of aged rats. There was no difference between young and aged rats in messenger RNA levels encoding the low affinity nerve growth factor receptor, p75 NGFR. These findings suggest that aged basal forebrain cholinergic neurons exhibit a reduced capacity to sustain receptor mediated uptake and retrograde transport of target-derived neurotrophin. This reduced capacity is associated with severe neuronal atrophy and may contribute to the pronounced vulnerability of these neurons to degeneration in aging and Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.