Abstract

Soil organic matter (SOM) concentration and enzyme activity are important biochemical indicators of soil health for assessing the sustainability of agricultural management practices. However, little is known about the long-term effects of tillage and crop residue management on SOM and enzyme activities in soil particle-size fractions on the Loess Plateau of Northern China. The objective of this study was to investigate the effects of 11 years of combined tillage and crop residue management treatments on soil organic carbon (SOC), total nitrogen (TN) concentrations and enzyme activities in bulk soil and particle-size fractions from a rainfed wheat (Triticum aestivum L.) monoculture system in this region. We hypothesized that reduced tillage and increased residue retention would increase SOC, TN and enzyme activities in both bulk soil and particle-size fractions, and that enzyme activity would serve as a more sensitive indicator of soil health in response to management. Compared with conventional tillage and residue removal (CTRR), reduced tillage and stubble mulch residue retention (RTSM) increased bulk soil activities of most enzymes (sulfatase +68%, invertase +62%, β-glucosidase +58%, dehydrogenase +46%). These increases were greater than the relative increases in total SOC (34%) and TN (33%) concentrations, supporting our hypothesis of a stronger response in microbial activity to management than total element stocks. The RTSM treatment also increased SOC and TN concentrations, as well as β-glucosidase, acid phosphatase and urease activities in all particle-size fractions (2000-250, 250-53, 53-2 and < 2 μm) compared with the CTRR treatment. Both β-glucosidase and acid phosphatase showed a general decrease from coarse- to fine-sized fractions, and resembled the distribution of SOC and TN concentrations in particle-size fractions. Conversely, urease activity was greater in sand and clay fractions, which was decoupled from SOC and TN distributions. Our results indicate that biological indicators of soil health were more sensitive than C and N stocks to cumulative long-term changes in tillage and residue management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call