Abstract
Theta-toxin (perfringolysin O) binds to cell surface cholesterol and forms oligomeric pores that cause membrane damage. Both in cytotoxicity and cell survival assays, a mutant Chinese hamster ovary cell line NPC1(-) that lacked Niemann-Pick C1 showed reduced sensitivity to theta-toxin, compared with wild-type (wt) cells. BCtheta is a derivative of theta-toxin that retains cholesterol-binding activity but lacks cytotoxicity. Confocal and electron microscopy revealed the presence of multiple vesicles which bound BCtheta, both on the cell surface and in the extracellular space of these cells. BCtheta binding to raft microdomains was verified by its resistance to 1% Triton X-100 at 4 degrees C and recovery of bound BCtheta in floating low-density fractions on sucrose density gradient fractionation. BCtheta-labeled vesicles were abolished when NPC1(-) cells were depleted of lipoproteins and also when treated with a Rho-associated kinase inhibitor Y-27632. In addition, similar vesicles were observed in wt cells treated with progesterone. In parallel with these results, theta-toxin sensitivity of NPC1(-) cells was increased when cells were depleted of lipoproteins or treated with Y-27632, whereas that of wt cells was decreased by progesterone. Our findings suggest that sequestration of toxin to raft-enriched cell surface vesicles may underlie reduced sensitivity of NPC1-deficient cells to theta-toxin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have