Abstract
Pentacene organic thin-film transistors have been fabricated with their NdTaO gate dielectrics annealed at 200 °C, 400 °C, and 800 °C to study the effects of remote phonon scattering caused by the thermal vibration of the gate dielectric on the carrier transport in the conduction channel. Although the sample annealed at 800 °C can achieve the best dielectric quality (reflected by its lowest oxide-charge density, smallest dielectric surface roughness, and largest pentacene grain size), it shows the lowest carrier mobility of 0.44 cm2/V·s as compared to the highest mobility of 1.69 cm2/V·s for the control sample without dielectric annealing. In addition, this mobility degradation increases with increasing annealing temperature in spite of improving dielectric quality. Transmission electron microscopy shows that higher annealing temperature results in the formation of a thicker Si-gate/gate-dielectric interlayer, which increases the separation between the Si-gate plasmons and the gate-dielectric dipoles to weaken the screening effect of the gate electrode on the remote phonon scattering of the high-k gate dielectric, resulting in a lower carrier mobility. Measurements at high temperatures also support the effects of the interlayer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.