Abstract

Reduced-scale shaking table testing is a useful tool for understanding the seismic behavior of geosynthetic-reinforced soil walls. This paper presents the results from a series of reduced-scale shaking table tests on eight different configurations. The effects of change in peak ground acceleration, reinforcement length and spacing, model scale, treatment of the top two facing block layers on the accelerations on a wall face, maximum displacements of the wall face during shaking, permanent displacements, and strains in reinforcement are investigated. Maximum accelerations measured on the wall face during shaking increased from bottom to top. Geotextile length and spacing did not affect the maximum accelerations and face displacements when the geotextile length met the minimum requirements of established design procedures. No significant permanent displacements were observed. Decreasing the geotextile length and increasing the geotextile spacing increased the geotextile strains when the geotextile was long enough to provide anchorage beyond the potential failure surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.