Abstract

ABSTRACT For understanding the fundamental properties of unsteady motions in combustion chambers, and for applications of active feedback control, reduced-order models occupy a uniquely important position. A framework exists for transforming the representation of general behavior by a set of infinite-dimensional partial differential equations to a finite set of nonlinear second-order ordinary differential equations in time. The procedure rests on an expansion of the pressure and velocity fields in modal or basis functions, followed by spatial averaging to give the set of second-order equations in time. Nonlinear gasdynamics is accounted for explicitly, but all other contributing processes require modeling. Reduced-order models of the global behavior of the chamber dynamics, most importantly of the pressure, are obtained simply by truncating the modal expansion to the desired number of terms. Central to the procedures is a criterion for deciding how many modes must be retained to give accurate results. Addressing that problem is the principal purpose of this paper. Our analysis shows that, in the case of longitudinal modes, a first-mode instability problem requires a minimum of four modes in the modal truncation, whereas, for a second-mode instability, one needs to retain at least the first eight modes. A second important problem concerns the conditions under which a linearly stable system becomes unstable to sufficiently large disturbances. Previous work has given a partial answer, suggesting that nonlinear gasdynamics alone cannot produce pulsed or “triggered” true nonlinear instabilities, that suggestion is now theoretically established. Also, a certain form of the nonlinear energy addition by combustion processes is known to lead to stable limit cycles in a linearly stable system. A second form of nonlinear combustion dynamics with a new velocity coupling function that naturally displays a threshold character is shown here also to produce triggered limit-cycle behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.