Abstract
The nonlinear forced vibrations of a microbeam are investigated in this paper, employing the strain gradient elasticity theory. The geometrically nonlinear equation of motion of the microbeam, taking into account the size effect, is obtained employing a variational approach. Specifically, Hamilton’s principle is used to derive the nonlinear partial differential equation governing the motion of the system which is then discretized into a set of second-order nonlinear ordinary differential equations (ODEs) by means of the Galerkin technique. A change of variables is then introduced to this set of second-order ODEs, and a new set of ODEs is obtained consisting of first-order nonlinear ordinary differential equations. This new set is solved numerically employing the pseudo-arclength continuation technique which results in the frequency–response curves of the system. The advantage of this method lies in its capability of continuing both stable and unstable solution branches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.